If it's not what You are looking for type in the equation solver your own equation and let us solve it.
120=2h^2+10h
We move all terms to the left:
120-(2h^2+10h)=0
We get rid of parentheses
-2h^2-10h+120=0
a = -2; b = -10; c = +120;
Δ = b2-4ac
Δ = -102-4·(-2)·120
Δ = 1060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1060}=\sqrt{4*265}=\sqrt{4}*\sqrt{265}=2\sqrt{265}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{265}}{2*-2}=\frac{10-2\sqrt{265}}{-4} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{265}}{2*-2}=\frac{10+2\sqrt{265}}{-4} $
| 90=2h^2+10h | | 60=2h^2+10h | | 50=2h^2+10h | | 40=2h^2+10h | | 85x+280=1.10 | | 30=2h^2+10h | | A=165+5x | | 20=2h^2+10h | | 10=2h^2+10h | | 11=y/2+3 | | 3x+5=-3x+13 | | 60=4h^2+10h | | 50=4h^2+10h | | 40=4h^2+10h | | 52+91+x=180 | | 30=4h^2+10h | | 0=4h^2+10h | | 20=4h^2+10h | | 3x+5=8x-23 | | 10=4h^2+10h | | 8(n+3)=7 | | 24x=8x+1 | | -112+7x^2=0 | | 10x^2-10.5x=0 | | 10x*x-10.5=0 | | 35/25=15-c/5 | | 16x+10-11300=3500+11x-5. | | 2x+12=4(x+4) | | 5c+2(2c-4)=55 | | 16x+10-11300=0 | | 10(x+1)=5(x+4) | | 6-5q=56 |